Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Sci ; 114(9): 3595-3607, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37438885

RESUMO

Endometrial cancer (EC) is a common malignant tumor that lacks any therapeutic target and, in many cases, recurrence is the leading ca use of morbidity and mortality in women. Widely known EC has a strongly positive correlation with abnormal lipid metabolism. Squalene epoxidase (SQLE), a crucial enzyme in the cholesterol synthesis pathway regulating lipid metabolic processes has been found to be associated with various cancers in recent years. Here, we focused on studying the role of SQLE in EC. Our study revealed that SQLE expression level was upregulated significantly in EC tissues. In vitro experiments showed that SQLE overexpression significantly promoted the proliferation, and inhibited cell apoptosis of EC cells, whereas SQLE knockdown or use of terbinafine showed the opposite results. Furthermore, we found out that the promotional effect of SQLE on the proliferation of EC cells might be achieved by activating the PI3K/AKT pathway. In vivo, studies confirmed that the knockdown of SQLE or terbinafine can observably inhibit tumor growth in nude mice. These results indicate that SQLE may promote the progression of EC by activating the PI3K/AKT pathway. Moreover, SQLE is a potential target for EC treatment and its inhibitor, terbinafine, has the potential to become a targeted drug for EC treatment.


Assuntos
Neoplasias do Endométrio , Proteínas Proto-Oncogênicas c-akt , Humanos , Animais , Camundongos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Terbinafina/farmacologia , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Transdução de Sinais , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Proliferação de Células , Linhagem Celular Tumoral
2.
Br J Ophthalmol ; 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339867

RESUMO

BACKGROUND/AIMS: Diabetic retinopathy is the most common eye disease that causes blindness in the working population. Neurodegeneration is the early sign of diabetic retinopathy, but no drug has been approved for delaying or reversing retinal neurodegeneration. Huperzine A, a natural alkaloid isolated from Huperzia serrata, displays neuroprotective and antiapoptotic effects in treating neurodegenerative disorders. Our study aims to investigate the effect of huperzine A in preventing retinal neurodegeneration of diabetic retinopathy and its possible mechanism. METHODS: Diabetic retinopathy model was induced by streptozotocin. H&E staining, optical coherence tomography, immunofluorescence staining and angiogenic factors were used to determine the degree of retinal pathological injury. The possible molecular mechanism was unrevealed by network pharmacology analysis and further validated by biochemical experiments. RESULTS: In our study, we demonstrated that huperzine A has a protective effect on the diabetes retina in a diabetic rat model. Based on the network pharmacology analysis and biochemical studies, huperzine A may treat diabetic retinopathy via key target HSP27 and apoptosis-related pathways. Huperzine A may modulate the phosphorylation of HSP27 and activate the antiapoptotic signalling pathway. CONCLUSION: Our findings revealed that huperzine A might be a potential therapeutic drug to prevent diabetic retinopathy. It is the first-time combining network pharmacology analysis with biochemical studies to explore the mechanism of huperzine A in preventing diabetic retinopathy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...